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Abstract

The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an

infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be per-

meable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex

potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained

for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally,

the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of

a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the

crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are de-

pendent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a

homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and

material constants.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With increasingly wide application of piezoelectric-fiber composites in engineering, it is of both theo-

retical and practical importance to study the arc-shaped crack problems in piezoelectric materials. Indeed,
the problem has been received considerable interest in recent years, and several important solutions have

been presented by Zhong and Meguid (1997a,b) for the case of a circular arc-crack in a homogeneous

piezoelectric material, and by Zhong and Meguid (1997a,b), and also Deng and Meguid (1999) for the case

of a circular-arc interface crack in piezoelectric bimaterials. In their works the cracks are assumed to be

impermeable. Recently, Gao and Fan (1999) investigated a similar problem to the above works, but the

crack is assumed to be permeable. However, it should be noted that in Gao and Fan�s work (1999), no
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solutions were presented for the electric field on the crack faces. In fact, the solutions are very important to

the study of electric-boundary-condition evolution on crack faces. More and more findings show that a

mathematical crack in piezoelectric media behaves more like a permeable slit in a low-level loading. With

the increasing of the applied loading, the intensity of electric field on crack faces varies, and as a result the
crack faces may evolve to be impermeable, semi-impermeable, conductive or more complicated cases.

Although, up to now, it seems that one has yet not known much about the critical conditions of the above

evolution, the study for the case of permeable cracks is the first step to the other complicated cases.

In this paper we will conduct an explicit and systemic analysis for N circular-arc interface cracks between

a circular inhomogeneity and an infinite matrix. Considering that the cracks may emerge between piezo-

electric fibers and the matrix, on the surface of an elastic inclusion in piezoelectric materials, or within a

homogeneous piezoelectric medium, etc., both the inhomogeneity and matrix are assumed to be piezo-

electric in the present analysis, in order to obtain a unity solution. Compared with the established literature
on the topic, the development of this work includes: the present analysis is valid not only to permeable

crack model, also to impermeable crack model; explicit results are presented for the electric field on crack

faces, and closed-form solutions for the case of two arc-shaped interface cracks are at the first time obtained

as one of examples. Moreover, the final solutions are expressed only by the applied loads and a bimaterial

matrix M, and thus it becomes easy to observe the coupling effects taking place between mechanical and

electric fields.

Below is the plan of this work. Following the brief introduction, Section 2 outlines the basic equations to

be need in the later sections, and then the electric field on crack faces and the complex potentials in media
are derived in Sections 3 and 4, respectively. Given in Section 5 are the expressions of field intensity factors.

As examples, explicit solutions for the case of one crack, two cracks and without crack are obtained in

Section 6, respectively. Finally, Section 7 concludes the work.

2. Basic equations

In a fixed Cartesian coordinate system xj (j ¼ 1–3), the general equations governing the three-dimen-
sional theory of piezoelectricity can be written as (Pak, 1990)

rij ¼ cijklckl � ekijEk; Di ¼ eiklckl þ eikEk; ð1Þ

rij;j ¼ 0; Di;i ¼ 0; ð2Þ

2cij ¼ uj;i þ ui;j; Ei ¼ �u;i ði; j; k; l ¼ 1–3Þ; ð3Þ

where rij, Di, cij, ui, Ei and u are the components of stress, electric displacement, strain, displacement,

electric field and electric potential, respectively; cijkl, ekij and eik stand for elastic constants, piezoelectric

constants and dielectric constants, respectively; a comma indicates partial derivative.

Consider a circular piezoelectric inhomogeneity partially unbonded in an infinite piezoelectric matrix,
which is subjected to anti-plane mechanical loads as well as inplane electric loads at infinity, as shown in

Fig. 1. Assume that both the inhomogeneity and matrix are transversely isotropic with respect to the x3-
axis, and x1 � x2 is the isotropic plane, in which the regions occupied by the inhomogeneity and matrix are

denoted by s1 and s2, respectively. The interface between s1 and s2 is denoted by L (L ¼ Lc þ LbÞ, where Lc

represents the interface cracks; and Lb, the bonded part. In addition, the cracks are assumed to be free of

force and external charges, but filled with air or vacuum.

In this case, the displacement ui and the electric potential u have the form

u1 ¼ u2 ¼ 0; u3 ¼ u3ðx1; x2Þ; u ¼ uðx1; x2Þ: ð4Þ
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Thus, (2) can be simplified, by substituting (3) with (4) into (1), as

r3k ¼ c44
ou3

oxk
þ e15

ou
oxk

;

Dk ¼ e15
ou3

oxk
� e11

ou
oxk

ðk ¼ 1; 2Þ: ð5Þ

Inserting (5) into (2) results in

c44r2u3 þ e15r2u ¼ 0;

e15r2u3 � e11r2u ¼ 0;
ð6Þ

where r2 ¼ o2=ox21 þ o2=ox22 is the two-dimensional Laplacian operator.
Due to e215 þ c44e11 6¼ 0, one has from (6) that

r2u3 ¼ 0; r2u ¼ 0: ð7Þ

The general solution of (7) can be expressed as

u3ðx1; x2Þ ¼ 2Imx1ðzÞ; uðx1; x2Þ ¼ 2Imx2ðzÞ; z ¼ x1 þ ix2; ð8Þ

where Im stands for the imaginary part, and xkðzÞ are two complex functions.

Using (5), (3) and (8), the stress r3j, the electric displacement Dj and the electric field Ej can be deter-

mined by the following equations

r32 þ ir31 ¼ 2
X2

k¼1

b1kXkðzÞ;

D2 þ iD1 ¼ 2
X2

k¼1

b2kXkðzÞ; E2 þ iE1 ¼ �2X2ðzÞ;
ð9Þ

where XkðzÞ ¼ dxkðzÞ=dz, and bjk are the elements of an elastic matrix:

½bjk	 ¼ B ¼ c44 e15
e15 �e11

� �
; ð10Þ

a1

b1

1s

2s

2x

1x

1D∞

2D∞

23σ ∞

13σ ∞

na

nb

Na

Nb

cL

bL

Fig. 1. N interfacial cracks between two piezoelectric materials.
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whose inverse matrix is

K ¼ B�1 ¼ 1

e215 þ c44e11

e11 e15
e15 �c44

� �
: ð11Þ

Introducing a polar coordinate system ðr; hÞ, the field variables can be rewritten as

r3h þ ir3r ¼ 2eih
X2

k¼1

b1kXkðzÞ; z ¼ reih;

Dh þ iDr ¼ 2eih
X2

k¼1

b2kXkðzÞ;

Eh þ iEr ¼ �2eihX2ðzÞ; u3ðr; hÞ ¼ 2Imx1ðzÞ:

ð12Þ

From (12), one has

r3r ¼ 2Im eih
X2

k¼1

b1kXkðzÞ
" #

;

Dr ¼ 2Im eih
X2

k¼1

b2kXkðzÞ
" #

;

Er ¼ �2Im eihX2ðzÞ
� �

;

Eh ¼ �2Re eihX2ðzÞ
� �

;

u03 ¼ 2Re zX1ðzÞ½ 	;

ð13Þ

where Re means taking the real part, and u03 ¼ ou3ðr; hÞ=oh.
From (13) the field variables can be expressed, in the form of vectors, as

r3r

Dr

� 	
¼ eih

i
BFðzÞ

�
� 1

e2ih
BFðzÞ

�
;

u0=r
�Eh

� 	
¼ eih FðzÞ

�
þ 1

e2ih
FðzÞ

�
; ð14Þ

where

FðzÞ ¼ ½X1ðzÞ;X2ðzÞ	T:
On L, noting that z ¼ Reih and �zz ¼ R2=z, (14) becomes

r3r

Dr

� 	
L

¼ z
iR

BFðzÞ
�

� R2

z2
BFðzÞ

�
;

u03=R
�Eh

� 	
L

¼ z
R

FðzÞ
�

þ R2

z2
FðzÞ

�
: ð15Þ

Define

T ¼ iR
z

r3r

Dr

� 	
; U ¼ 1

z
u03

�REh

� 	
; GðzÞ ¼ R2

z2
F

R2

z


 �
: ð16Þ

Then, we have from (15) and (16) that

T ¼ BFðzÞ � BGð�zzÞ on L; ð17Þ

U ¼ FðzÞ þ Gð�zzÞ on L; ð18Þ

where two complex functions FðzÞ and GðzÞ will be determined by the following boundary conditions

(Parton, 1976):
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rð1Þ
3r ¼ 0 on Lc; ð19Þ

u0ð1Þ3 ¼ u0ð2Þ3 on Lb; ð20Þ

rð1Þ
3r ¼ rð2Þ

3r ; Dð1Þ
r ¼ Dð2Þ

r ; Eð1Þ
h ¼ Eð2Þ

h on L ¼ Lc þ Lb: ð21Þ

3. Electric boundary value on the crack faces

In this section we study the electric field on the crack faces. At first, let us examine the nature of FðzÞ and
GðzÞ. For the region s1, F1ðzÞ and G1ðzÞ have no singular point, and thus both have the form

F1ðzÞ ¼ F10ðzÞ; G1ðzÞ ¼ G10ðzÞ; ð22Þ

where F10ðzÞ and G10ðzÞ are two analytical functions, respectively, in s1 and s2.
For the region s2, F2ðzÞ has the form of

F2ðzÞ ¼ A0 þ
A�1

z
þ 0

1

z2


 �
as z ! 1; ð23Þ

where A�1 is a constant vector related to the resultant force P 0
30 and the sum of net charge Q0

0 on the whole

circular-hole rim. According to the equilibrium condition of the inhomogeneity, obviously P 0
30 ¼ Q0

0 ¼ 0.
This indicates A�1 ¼ 0; A0 is a known constant which is related to the applied loads by

B2A0 ¼ p1; 2p1 ¼ ½r1
32 þ ir1

31;D
1
2 þ iD1

1 	T: ð24Þ

Thus, (23) can be rewritten as

F2ðzÞ ¼ A0 þ F20ðzÞ; ð25Þ

where F20ðzÞ ¼ Oðz�2Þ, which is analytical in s2.
Noting (16.3) and (23), G2ðzÞ has the from of

G2ðzÞ ¼
R2

z2
A0 þ G20ðzÞ; ð26Þ

where G20ðzÞ is a homolorphic function in s1.
On the crack faces, the stress-free boundary condition requires

T ¼ i2ie
�ihD0

r on Lc; ð27Þ
where i2 ¼ ½0; 1	T; D0

r is a unknown function. Obviously, the key task is to determine D0
r . This will be done

through the following procedure:

Firstly, one has from (21) that T1 ¼ T2 on L, which leads to, from (17), that

B1F
þ
1 ðtÞ � B1G

�
1 ðtÞ ¼ B2F

�
2 ðtÞ � B2G

þ
2 ðtÞ; t 2 L: ð28Þ

Substituting (22)–(26) into (28) yields

½B1F10ðtÞ þ B2G20ðtÞ � p1	þ � B2F20ðtÞ
�

þ B1G10ðtÞ � p1 R2

t2

��
¼ 0; t 2 L: ð29Þ
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From (29) we have (Muskhelishvili, 1975)

B1F10ðzÞ þ B2G20ðzÞ � p1 ¼ 0; z 2 s1;

B2F20ðzÞ þ B1G10ðzÞ � p1 R2

t2
¼ 0; z 2 s2:

ð30Þ

Secondly, introduce two vectors DUðtÞ and TðtÞ as

DUðtÞ ¼ U1ðtÞ � U2ðtÞ; ð31Þ

TðtÞ ¼ B1F
þ
1 ðtÞ � B1G

�
1 ðtÞ; t 2 L: ð32Þ

Substituting (18) into (31), and then using (30) leads to

DUðtÞ ¼ KþðtÞ � K�ðtÞ; ð33Þ
where

KðzÞ ¼ HB1F10ðzÞ � 2B�1
2 p1; z 2 s1;

HB2F20ðzÞ � ðB�1
1 � B�1

2 Þp1 R2

z2 ; z 2 s2;

�
ð34Þ

H ¼ B�1
1 þ B�1

2 : ð35Þ
Due to DUðtÞ ¼ 0 on Lb, (33) and (34) show that KðzÞ is a holomorphic function in the z-plane except on

the cracks. Moreover, (21.3) gives

½DUðtÞ	ð2Þ ¼ 0 on Lb þ Lc; ð36Þ

where ½X	ð2Þ represents taking the second row of X.

From (33) and (36), one has

Kþ
2 ðtÞ � K�

2 ðtÞ ¼ 0 on Lb þ Lc: ð37Þ
The solution of (37) is

K2ðzÞ ¼ 0: ð38Þ
On the other hand, (32) can be reduced to

TðtÞ ¼ H�1KþðtÞ þ H�1K�ðtÞ þ 2H�1B�1
2 p1



þ p1 R2

z2

�
; ð39Þ

namely

TðtÞ ¼ H�1KþðtÞ þ H�1K�ðtÞ þ g1 þ g1 R2

z2
; ð40Þ

where

g1 ¼ 2Mp1; M ¼ H�1B�1
2 : ð41Þ

Expanding (40), and using (38), leads to

TrðtÞ ¼ H�1
11 K

þ
1 ðtÞ þ H�1

11 K
�
1 ðtÞ þ g11 þ g11

R2

t2
; ð42Þ

TDðtÞ ¼ H�1
21 K

þ
1 ðtÞ þ H�1

21 K
�
1 ðtÞ þ g12 þ g12

R2

t2
: ð43Þ
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On the crack we have r0
r ¼ 0, i.e., Tr ¼ 0. Thus we obtain from (42) that

Kþ
1 ðtÞ þ K�

1 ðtÞ ¼ � 1

H�1
11

g11



þ g11

R2

t2

�
on Lc: ð44Þ

Substituting (44) into (43) we have

T 0
D ¼ iR

z
D0

r ¼ ðg12 � cDg11 Þ þ ðg12 � cDg11 ÞR
2

t2
on Lc; ð45Þ

where cD ¼ H�1
21 =H

�1
11 , which, by using (35) and (11), can be reduced to

cD ¼
eð1Þ15 e2ð2Þ15 þ cð2Þ44 eð2Þ11

h i
þ eð2Þ15 e2ð1Þ15 þ cð1Þ44 eð1Þ11

h i
cð1Þ44 e2ð2Þ15 þ cð2Þ44 eð2Þ11

h i
þ cð2Þ44 e2ð1Þ15 þ cð1Þ44 eð1Þ11

h i :
From (45), one has

D0
r ðhÞ ¼ 2Im½eihðg12 � cDg11 Þ	 on Lc: ð46Þ

Finally, we obtain from (46), by using (41) and (24), that

D0
r ðhÞ ¼ ðM21 � cDM11Þðr1

32 sin h þ r1
31 cos hÞ þ ðM22 � cDM12ÞðD1

2 sin h þ D1
1 cos hÞ: ð47Þ

4. Complex potentials

Inserting (40) and (45) into (27) we have

TðtÞ ¼ H�1KþðtÞ þ H�1K�ðtÞ þ g1 þ g1 R2

z2
¼ i2 ðg12

�
� cDg11 Þ þ ðg12 � cDg11 ÞR

2

t2

�
on Lc ð48Þ

which can be further reduced to

½H�1KðtÞ	þ þ ½H�1KðtÞ	� ¼ P1 þ P1 R2

t2
; ð49Þ

where

P1 ¼ i2ðg12 � cDg11 Þ � g1: ð50Þ
The general solution of (49) is (Muskhelishvili, 1975)

H�1KðzÞ ¼ 1

2
P1

�
þ P1 R2

z2

�
þ 1

2X ðzÞ PðzÞ
�

þ b�1

z
þ b�2

z2

�
; ð51Þ

where

PðzÞ ¼ bNz
N þ bN�1z

N�1 þ � � � þ b0;

X ðzÞ ¼
YN
n¼1

ðz� anÞ1=2ðz� bnÞ1=2:
ð52Þ

Below we discuss the related equations to the coefficients bn involved in (52.1). Near z ¼ 0 one has

1

X ðzÞ ¼
1

X ð0Þ 1

"
þ z

2

XN
n¼1

1

an



þ 1

bn

�
þ � � �

#
; ð53Þ
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where

X ð0Þ ¼ ð�1ÞN
YN
n¼1

ffiffiffiffiffiffiffiffiffi
anbn

p
:

Since H�1KðzÞ is analytic near z ¼ 0, substituting (53) into (51), and then letting the coefficients of z�1

and z�2 on the right side of (51) to be zero, we have

z�1 : b�1 þ
1

2

XN
n¼1

1

an



þ 1

bn

�
b�2 ¼ 0; ð54Þ

z�2 : P1R2 þ 1

X ð0Þ b�2 ¼ 0: ð55Þ

One obtains from (54) and (55) that

b�2 ¼ �X ð0ÞR2P1;

b�1 ¼ � 1

2

XN
n¼1

1

an



þ 1

bn

�
b�2:

ð56Þ

On the other hand, when z ! 1:

1

X ðzÞ ¼ z�N 1

"
þ 1

2z

XN
n¼1

ðan þ bnÞ þOðz�2Þ
#
: ð57Þ

Substituting (57) into (51), and then noting that the coefficients of z0 and z�1 on the right side of (51) are

zero when z ! 1, we have

z0 : �P1 þ bN ¼ 0;

z�1 : bN�1 þ
1

2

XN
n¼1

ðan þ bnÞbN ¼ 0;

which results in

bN ¼ P1; ð58Þ

bN�1 ¼ � 1

2

XN
n¼1

ðan þ bnÞbN : ð59Þ

The remainder unknown coefficients can be determined from the single-valued conditions of displace-

ment and electric potentials, such thatZ
Lc

DUðtÞdt ¼ 0: ð60Þ

Inserting (33) into (60) leads toZ
Lc

½KþðtÞ � K�ðtÞ	dt ¼ 0;

namelyZ
Lc

½H�1KþðtÞ � H�1K�ðtÞ	dt ¼ 0: ð61Þ
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Substituting (51) into (61) producesZ
Lc

1

XþðtÞ PðtÞ
�

þ b�1

t
þ b�2

t2

�
dt ¼ 0: ð62Þ

After (51) is completely determined, Fk0ðzÞ can be found by using (34). With Fk0ðzÞ all field variables in

the matrix and inhomogeneity can be readily determined.

5. Field intensity factors

For any crack ln, define the field intensity factors at the crack tip z ¼ bn ¼ Reihb as

kðbnÞ ¼ ½kr; kD	T ¼ lim
q!0

ffiffiffiffiffiffiffiffi
2pq

p
½r3r;Dr	T; kEðbnÞ ¼ lim

q!0

ffiffiffiffiffiffiffiffi
2pq

p
Er; ð63Þ

where q means the distance from the crack tip along the interface; kr, kD and kE are the intensity factors of

stress, electric displacement and electric field, respectively.

From (13) one has

½r3r;Dr	T ¼ 2Im½eihBFðzÞ	; Er ¼ �2Im½eihX2ðzÞ	: ð64Þ

Noting q ¼ Rdh, and

BFsðzÞ ¼ BFs
0ðzÞ ¼ H�1KðzÞ; Xs

2ðzÞ ¼ ½FsðzÞ	ð2Þ ¼ ½B�1H�1KðzÞ	ð2Þ;

where the superscript s stands for the singular principle parts of functions, and then inserting (64) into (63)

produces

kðbnÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
2pR

p
Im lim

h!hb
ðh

�
� hbÞ1=2eihH�1KðzÞ

�
;

kðjÞE ðbnÞ ¼ �2
ffiffiffiffiffiffiffiffiffi
2pR

p
Im KðjÞ lim

h!hb
ðh

�
� hbÞ1=2eihH�1KðzÞ

�
ð2Þ
; ð65Þ

where kðjÞE is the intensity factor of electric field when z approaches into the crack tip from within the in-

homogeneity (j ¼ 1) or the matrix (j ¼ 2), and KðjÞ ¼ B�1
j .

Using (38), (65) can be rewritten as

krðbnÞ ¼ H�1
11 /ðhbÞ; kDðbnÞ ¼ H�1

21 /ðhbÞ; kðjÞE ðbnÞ ¼ � KðjÞ
21H

�1
11

h
þ KðjÞ

22H
�1
21

i
/ðhbÞ; ð66Þ

where

/ðhbÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
2pR

p
Im lim

h!hb
ðh

�
� hbÞ1=2eihK1ðzÞ

�
: ð67Þ

From (66) one has

kD ¼ cDkr; kðjÞE ¼ cðjÞE kr; ð68Þ
where

cðjÞE ¼ �½KðjÞ
21 þ cDKðjÞ

22 	: ð69Þ
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It can be shown from (69) that

cð1ÞE ¼ �cð2ÞE ¼ eð1Þ15 c
ð2Þ
44 � eð2Þ15 c

ð1Þ
44

cð1Þ44 e2ð2Þ15 þ cð2Þ44 eð2Þ11 	 þ cð2Þ44 ½e
2ð1Þ
15 þ cð1Þ44 eð1Þ11

h i : ð70Þ

Eqs. (68) and (70) show that kD and kE are always dependent on kr, and moreover the electric field is
jumpy ahead of the crack tip.

Furthermore, substituting (51) into (65.1) leads to the general expression of the field factor vector as

kðbnÞ ¼
ffiffiffiffiffiffiffiffiffi
2pR

p
Im lim

h!hb
ðh

�
� hbÞ1=2

eih

X ðzÞ PðzÞ
�

þ b�1

z
þ b�2

z2

��
; z ¼ Reih: ð71Þ

Similarly, at x ¼ an one has

kðanÞ ¼
ffiffiffiffiffiffiffiffiffi
2pR

p
Im lim

h!ha
ðha

�
� hÞ1=2 eih

X ðzÞ PðzÞ
�

þ b�1

z
þ b�2

z2

��
: ð72Þ

6. Examples

6.1. The solution to a permeable crack

For the case shown in Fig. 2, we have

a1 ¼ Re�ih0 ; b1 ¼ Reih0 ; X ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2zR cos h0 þ R2

p
;

X ð0Þ ¼ �
ffiffiffiffiffiffiffiffiffi
a1b1

p
¼ �R; PðzÞ ¼ b1zþ b0:

ð73Þ

From (73), (56), (58), (59) one can obtain

b1 ¼ P1; b0 ¼ �R cos h0P
1;

b�2 ¼ R3P1; b�1 ¼ �R2 cos h0P
1:

ð74Þ

Substituting (73) with (74) into (71), and then using the following identities:

X ðhÞ ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2i# � 2eih cos h0 þ 1

p
¼ eih=2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ei# � 2 cos h0 þ eih

p
¼ eih=2R

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos h � cos h0

p
;

a1

b1

1s

2s

2x

1x

0θ
0−θ

1D∞

2D∞

23σ ∞

13σ ∞

Fig. 2. The case of an interface crack.
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and

cos h ¼ cos½h0 þ ðh � h0Þ	 ¼ cos h0 � ðh � h0Þ sin h0 þ � � � ;

we obtain

kðb1Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
Im½eih0=2P1	: ð75Þ

Similarly one has

kða1Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
Im½e�ih0=2P1	; ð76Þ

in which P1, defined by (50), can be reduced to

P1 ¼ �g11 k0; ð77Þ

where

k0 ¼ ½1; cD	T; g11 ¼ M11ðr1
32 þ ir1

31Þ þM12ðD1
2 þ iD1

1 Þ: ð78Þ

Substituting (77) into (75) and (76) results in

kðb1Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
Im½eih0=2g11 	k0; ð79Þ

kða1Þ ¼ þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
Im½e�ih0=2g11 	k0: ð80Þ

Inserting (78.1) into (79) and (80) leads to

kðb1Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
M11 r1

32 sin
h0

2


�
þ r1

31 cos
h0

2

�
þM12 D1

2 sin
h0

2



þ D1

1 cos
h0

2

��
k0; ð81Þ

kða1Þ ¼ þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
M11 r1

32 sin
h0

2


�
� r1

31 cos
h0

2

�
þM12 D1

2 sin
h0

2



� D1

1 cos
h0

2

��
k0: ð82Þ

For the case of purely elastic materials,

B1 ¼ cð1Þ44 ; B2 ¼ cð2Þ44 ; M11 ¼ C=ð1þ CÞ; M12 ¼ 0;

where C ¼ cð1Þ44 =c
ð2Þ
44 , and (81) and (82) degenerates into

krðb1Þ ¼ � 2C
1þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
r1
32 sin

h0

2



þ r1

31 cos
h0

2

�
;

krða1Þ ¼
2C

1þ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
r1
32 sin

h0

2



� r1

31 cos
h0

2

�
;

ð83Þ

which is consistent with that of Gong and Meguid (1994).

For the case of a homogeneous piezoelectric material, M ¼ I=2, and we have from (81) and (82) that

kðb1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
r1
32 sin

h0

2



þ r1

31 cos
h0

2

�
k0;

kða1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
r1
32 sin

h0

2



� r1

31 cos
h0

2

�
k0;

ð84Þ

which implies that in this case, the intensity factors are not dependent on the applied electric loadings.
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6.2. The solution to two permeable cracks

For the case shown in Fig. 3, one has

a1 ¼ Re�ih0 ; b1 ¼ Reih0 ; a2 ¼ �a1; b2 ¼ �b1; PðzÞ ¼ b2z
2 þ b1zþ b0;

X ðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4 � 2z2R2 cos 2h0 þ R4

p
; X ð0Þ ¼ R2

ð85Þ

and

b2 ¼ P1; b1 ¼ 0;

b�2 ¼ �R4P1; b�1 ¼ 0:
ð86Þ

Substituting (85) with (86) into (71), and then using:

X ðhÞ ¼
ffiffiffi
2

p
R2eih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2h0 � cos 2h

p
; ð87Þ

we obtain

kðb1Þ ¼
ffiffiffiffiffiffiffiffiffi
2pR

p
Im

1

2R2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2h0

p b2z
2
b

��
þ b0 þ

b�2

z2b

��
: ð88Þ

Eq. (86) shows that

b2z
2
b þ

b�2

z2b
;

is purely imaginary, and thus (88) becomes

kðb1Þ ¼ �
ffiffiffiffiffiffi
pR

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin 2h0

p
R2

Re½b0	: ð89Þ

It can be shown (see Appendix A)

b0 ¼ cos 2h0R2P1 � R2P1: ð90Þ
Substituting (90) into (89) leads to

kðb1Þ ¼ �
ffiffiffiffiffiffi
pR

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin 2h0

p ðcos 2h0 � 1ÞRe½P1	: ð91Þ

a1

b1

1s

2s

2x

1x

0θ

0−θ

1D∞

2D∞

23σ ∞

13σ ∞

1b−

1a−

Fig. 3. The case of two interface cracks.
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Using (77) and (78.2), (91) can be further reduced to

kðb1Þ ¼ �
ffiffiffiffiffiffiffiffiffi
2pR

p sin2 h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2h0

p ðM11r
1
32 þM12D1

2 Þk0: ð92Þ

6.3. The solution for the case of impermeable cracks

If the cracks are impermeable, one has D0
r ¼ 0, which is equivalent to letting the coefficient of i2 be zero.

Considering this we have from (50) that

P1 ¼ �g1: ð93Þ
Thus, the corresponding intensity factors, from (75) and (91), are

kðb1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
Im½eih0=2g1	; ð94Þ

for the case of an impermeable crack, and

kðb1Þ ¼
ffiffiffiffiffiffi
pR

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin 2h0

p ðcos 2h0 � 1ÞRe½g1	; ð95Þ

for the case of two impermeable cracks.

Substituting (41) with (24) into (94) and (95) we obtain

kðb1Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin h0

p
M r1

32 sin
h0

2


"
þ r1

31 cos
h0

2
;D1

2 sin
h0

2
þ D1

1 cos
h0

2

�T
#
;

for the case of a crack, and

kðb1Þ ¼ �
ffiffiffiffiffiffiffiffiffi
2pR

p sin2 h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin 2h0

p Mðr1
32;D

1
2 ÞT;

for the case of two cracks.

6.4. The solution for the case of a completely bonded inhomogeneity

In this case, the generalized displacement is continuous on the whole circular rim, and thus one has from

(33) that

KþðtÞ � K�ðtÞ ¼ 0 on L: ð96Þ
The solution of (96) is

KðzÞ ¼ Kð1Þ ¼ 0: ð97Þ
Substituting (97) into (34) leads to

B1F10ðzÞ ¼ 2Mp1; z 2 s1;

B2F20ðzÞ ¼ H�1ðB�1
1 � B�1

2 Þp1 R2

z2
; z 2 s2:

ð98Þ

Eq. (98) shows that all the field variables are uniform inside the inhomogeneity, and they can be ex-

pressed, from (9), as

r0
32 þ ir0

31

D0
2 þ iD0

1

� 	
¼ 2B1F10ðzÞ; E0

2 þ iE0
2 ¼ �2½F10ðzÞ	ð2Þ: ð99Þ
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Using (98.1) and (99) we obtain the relation between the remotely applied fields and those inside the

inhomogeneity as

r0
32 þ ir0

31

D0
2 þ iD0

1

� 	
¼ 2M

r1
32 þ ir1

31

D1
2 þ iD1

1

� 	
; ð100Þ

E0
2 ¼ �2½W21r

1
32 þ W22D1

2 	; E0
1 ¼ �2½W21r

1
31 þ W22D1

1 	; ð101Þ

where W ¼ ðB1 þ B2Þ�1
.

For the case of an infinite isotropic matrix containing a piezoelectric fibre, letting B2 ¼ cð2Þ44 and noting

from (41.2) that

M ¼ ðB2HÞ�1 ¼ ðI þ cð2Þ44 B�1
1 Þ�1

;

Eq. (100) becomes

B1

�
þ cð2Þ44

� r0
32 þ ir0

31

D0
2 þ iD0

1

� 	
¼ 2B1

r1
32 þ ir1

31

D1
2 þ iD1

1

� 	
: ð102Þ

7. Conclusions

We study anti-plane strain problems of arc-shaped interfacial cracks between two piezoelectric materials

by using the Muskhelishvili�s theory. The presented solutions are not only valid to permeable and im-

permeable crack models, but also are very concise. This makes it easy to observe the mechanical-electric

coupling effects. It is found that for permeable interfacial cracks, the field singularities are dependent on the

applied mechanical load as well as the applied electric load, which is different from the results in the case of

straight cracks. However, for permeable cracks in a homogeneous material the field intensity factors are still

independent of the applied electric load.
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Appendix A. Derivation of (90)

Using (85) and (86), (62) can be expressed as

Z b

a

1

XþðtÞ b2t
2

�
þ b0 þ

b�2

t2

�
dt ¼ 0; t ¼ Reih; ðA:1Þ

in which XþðtÞ, i.e., (87), has the form

XþðtÞ ¼ 2R2eih
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 h0 � sin2 h

q
¼ 2R2 sin h0e

ihD; ðA:2Þ
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where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h

p
; k ¼ 1

sin h0

> 1:

Substituting (A.2) into (A.1) yields

P1R2I1 þ I�1b0 � P1R2I�3 ¼ 0; ðA:3Þ
where

In ¼
Z þh0

�h0

einh

D
dh; n ¼ �1;�3: ðA:4Þ

Eq. (A.4) can be further reduced to

In ¼ 2

Z h0

0

cos nh
D

dh: ðA:5Þ

Noting I1 ¼ I�1, one obtains from (A.3) that

b0 ¼
I�3

I�1

P1R2 � P1R2: ðA:6Þ

Using the following identities:

I�3

I�1

¼
R h0
0

cos 3h
D dhR h0

0
cos h

D dh
¼

R h0
0

4 cos3 h�3 cos h
D dhR h0

0
cos h

D dh
¼

4
R h0

0
cos3 h

D dhR h0
0

cos h
D dh

� 3; ðA:7Þ

and integration results (Prudnikov et al., 1990):Z h0

0

cos h
D

dh ¼ 1

k
arcsinðk sin h0Þ;

Z h0

0

cos3 h
D

dh ¼ D0

sin h0

2k2
þ 2k2 � 1

2k3
arcsinðk sin h0Þ;

where

D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 h0

q
¼ 0;

we obtain from (A.7) that

I�3

I�1

¼ 4 1



� 1

2k2

�
� 3 ¼ cos 2h0: ðA:8Þ

Substituting (A.8) into (A.6) finally gives

b0 ¼ cos 2h0R2P1 � R2P1:
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