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Abstract

The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an
infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be per-
meable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex
potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained
for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally,
the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of
a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the
crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are de-
pendent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a
homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and
material constants.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With increasingly wide application of piezoelectric-fiber composites in engineering, it is of both theo-
retical and practical importance to study the arc-shaped crack problems in piezoelectric materials. Indeed,
the problem has been received considerable interest in recent years, and several important solutions have
been presented by Zhong and Meguid (1997a,b) for the case of a circular arc-crack in a homogeneous
piezoelectric material, and by Zhong and Meguid (1997a,b), and also Deng and Meguid (1999) for the case
of a circular-arc interface crack in piezoelectric bimaterials. In their works the cracks are assumed to be
impermeable. Recently, Gao and Fan (1999) investigated a similar problem to the above works, but the
crack is assumed to be permeable. However, it should be noted that in Gao and Fan’s work (1999), no
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solutions were presented for the electric field on the crack faces. In fact, the solutions are very important to
the study of electric-boundary-condition evolution on crack faces. More and more findings show that a
mathematical crack in piezoelectric media behaves more like a permeable slit in a low-level loading. With
the increasing of the applied loading, the intensity of electric field on crack faces varies, and as a result the
crack faces may evolve to be impermeable, semi-impermeable, conductive or more complicated cases.
Although, up to now, it seems that one has yet not known much about the critical conditions of the above
evolution, the study for the case of permeable cracks is the first step to the other complicated cases.

In this paper we will conduct an explicit and systemic analysis for N circular-arc interface cracks between
a circular inhomogeneity and an infinite matrix. Considering that the cracks may emerge between piezo-
electric fibers and the matrix, on the surface of an elastic inclusion in piezoelectric materials, or within a
homogeneous piezoelectric medium, etc., both the inhomogeneity and matrix are assumed to be piezo-
electric in the present analysis, in order to obtain a unity solution. Compared with the established literature
on the topic, the development of this work includes: the present analysis is valid not only to permeable
crack model, also to impermeable crack model; explicit results are presented for the electric field on crack
faces, and closed-form solutions for the case of two arc-shaped interface cracks are at the first time obtained
as one of examples. Moreover, the final solutions are expressed only by the applied loads and a bimaterial
matrix M, and thus it becomes easy to observe the coupling effects taking place between mechanical and
electric fields.

Below is the plan of this work. Following the brief introduction, Section 2 outlines the basic equations to
be need in the later sections, and then the electric field on crack faces and the complex potentials in media
are derived in Sections 3 and 4, respectively. Given in Section 5 are the expressions of field intensity factors.
As examples, explicit solutions for the case of one crack, two cracks and without crack are obtained in
Section 6, respectively. Finally, Section 7 concludes the work.

2. Basic equations

In a fixed Cartesian coordinate system x; (j = 1-3), the general equations governing the three-dimen-
sional theory of piezoelectricity can be written as (Pak, 1990)

ij = Cijet Y — exijEr,  Di = €y + &k, (1)
0;;,=0, D=0, (2)
2y =wituiy, Ei=—¢@; (i,j,k1=13), (3)

where o, D;, y;, u;, E; and ¢ are the components of stress, electric displacement, strain, displacement,
electric field and electric potential, respectively; c;u, en; and ¢, stand for elastic constants, piezoelectric
constants and dielectric constants, respectively; a comma indicates partial derivative.

Consider a circular piezoelectric inhomogeneity partially unbonded in an infinite piezoelectric matrix,
which is subjected to anti-plane mechanical loads as well as inplane electric loads at infinity, as shown in
Fig. 1. Assume that both the inhomogeneity and matrix are transversely isotropic with respect to the x3-
axis, and x; — x; is the isotropic plane, in which the regions occupied by the inhomogeneity and matrix are
denoted by s; and s,, respectively. The interface between s; and s, is denoted by L (L = L. + L), where L.
represents the interface cracks; and Ly, the bonded part. In addition, the cracks are assumed to be free of
force and external charges, but filled with air or vacuum.

In this case, the displacement u; and the electric potential ¢ have the form

uy =uy; =0, M3:M3(X1,x2)7 (pzq)(xl,xz). (4)
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Fig. 1. N interfacial cracks between two piezoelectric materials.

Thus, (2) can be simplified, by substituting (3) with (4) into (1), as

Inserting (5) into (2) results in

(344V2u3 + 615V2(p =0,

eisVius; — e Vo =0, (6)
where V? = 0% /ox} + 0?/0x3 is the two-dimensional Laplacian operator.
Due to e} + cyérn # 0, one has from (6) that
Viu; =0, Ve =0. (7)
The general solution of (7) can be expressed as
uz(x1,%) =2Imw;(z), @(x1,x) =2Imws(z), z=2x +ix, (8)

where Im stands for the imaginary part, and w,(z) are two complex functions.
Using (5), (3) and (8), the stress a3, the electric displacement D; and the electric field £; can be deter-
mined by the following equations

2
03 +1i03 =2 Zblek(Z)a
k=1
2 ©)
D2 + iDl =2 szka(z), E2 + iEl = 7292(2),
k=1

where Q4(z) = dwy(z)/dz, and by, are the elements of an elastic matrix:

€15 —é11

bl =B = | . (10)
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whose inverse matrix is

A:B‘—;{S” es ] (11)

el + cuen | €15 —Cu

Introducing a polar coordinate system (r, ), the field variables can be rewritten as

2
: i0 § : i0
g3 + 103, = 2¢' b]k.Qk(Z), z=re s

k=1

2
Dy +iD, = 26" bufi(2),

k=1

Ey+iE, = =2¢"Q,(2), u3(r,0) = 2Imw,(2).

From (12), one has

)

2
oy = 2Im lei" > bufi(2)

k=1

2
D, =2Im |ﬁi0 Z by Q:(z2) |, (13)

k=1

E, = —2Im[e"Q(z)],
Ey = —2Re[e"(2)],
uy = 2Re[zQ (z)],

where Re means taking the real part, and u; = Ous(r, 0)/00.
From (13) the field variables can be expressed, in the form of vectors, as

{ (S: } = e—.m [BF(Z) - ezlml_?m} ; { ZIJ/EZ } =e [F(z) +ezlmm], (14)

i
where
F(z) = [2i(2), ()]
On L, noting that z = Re’ and z = R?/z, (14) becomes

O3 z j ;L — u' /R z R ——
Define
iR ( o3, 1 u R*_(R?
T?{Di}v U;{_R%U}v G<Z>?F<?)- (16)
Then, we have from (15) and (16) that
T =BF(z) —BG(z) on L, (17)

U=F()+G() onl, (18)

where two complex functions F(z) and G(z) will be determined by the following boundary conditions
(Parton, 1976):
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aglr) =0 on L, (19)
ul) = on Ly, (20)
o) =62, DO =p® EV=EP onL=L+Ly. (21)

3. Electric boundary value on the crack faces

In this section we study the electric field on the crack faces. At first, let us examine the nature of F(z) and
G(z). For the region s, F;(z) and G,(z) have no singular point, and thus both have the form

Fi(z) =Fu(z), Gi(z) = Gu(2), (22)
where Fio(z) and Gy(z) are two analytical functions, respectively, in s; and s,.
For the region s, F»(z) has the form of

Fz(z)A0+£+0<l2> as z — 00, (23)
z z

where A_; is a constant vector related to the resultant force P, and the sum of net charge O; on the whole
circular-hole rim. According to the equilibrium condition of the inhomogeneity, obviously P}, = Q; = 0.
This indicates A_; = 0; A, is a known constant which is related to the applied loads by

ByAg = p~, 2p® = [035 403, DF +iD¥]". (24)
Thus, (23) can be rewritten as
Fz(Z) = A() + on(Z), (25)

where Fy(z) = O(z72), which is analytical in s,.
Noting (16.3) and (23), G,(z) has the from of

GQ(Z) = f—jA_o —+ Ggo(Z), (26)

where Gy (z) is a homolorphic function in s;.
On the crack faces, the stress-free boundary condition requires

T =ijie "D’ on L, (27)
where i, = [0, 1]"; D is a unknown function. Obviously, the key task is to determine D?. This will be done
through the following procedure:

Firstly, one has from (21) that T, = T, on L, which leads to, from (17), that
B/ F; (1) — B|G; (t) = B,F; (t) = B,G; (1), t€L. (28)

Substituting (22)—(26) into (28) yields

[BlFlo(lL) + Bszo(t) — pOC]Jr — Bzeo(t) + B1G10(I) — p_oo_ = 0, tel. (29)
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From (29) we have (Muskhelishvili, 1975)
B]F]()(Z) —+ Bsz()(Z) — poo = 07 z e S1,

B,Fy(z) + B1Gyo(z) — pTOI:—ZZ =0, ze€ss.
Secondly, introduce two vectors AU(¢) and T(z) as
AU(t) = U, (t) — Uy(2),
T(¢) = B,F{ (t) — B,G| (¢), t€L.
Substituting (18) into (31), and then using (30) leads to
AU() =K (1) = K (),
where
K() = {HBle(z) —2B§11p°°, L zZ €8,
HB,Fy(z) — (B =By )p~¥%, zes,

z

H=B"'+B,".

(34)

(35)

Due to AU(¢) = 0 on Ly, (33) and (34) show that K(z) is a holomorphic function in the z-plane except on

the cracks. Moreover, (21.3) gives
[AU(2)] ) =0 on Ly + L,

where [X], represents taking the second row of X.
From (33) and (36), one has

KS(t)—K;(1)=0 on Ly + L.
The solution of (37) is
Ky(z) =0.
On the other hand, (32) can be reduced to

2
T(t) = H'K"(f) + H'K () + 2H 'B;’ <p°° + p_"CR—2> ,
z

namely
2

T(t)=H'K"(t) + H'K (1) + g~ + g_ocf—z,
where
g* =2Mp>~, M=H'B;".
Expanding (40), and using (38), leads to

_ e w R
T,(t) = Hy'K{ (1) + Hy 'K (1) + & "‘8?072,

_ e v R
Tn(t) :HzllKr(t) +H211K1 (1) + & Jrggct_z-

(36)
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On the crack we have ¢° =0, i.e., 7, = 0. Thus we obtain from (42) that

K (1) + K, (1) =

__R?
(gl“’ +gi’°t2) on L.

_ Iﬁ
Substituting (44) into (43) we have
) iR — R

Iy =D = (g5 — eogi") + (85 — eogr) 7 on L,

where ¢p = H,,'/H;,', which, by using (35) and (11), can be reduced to
(1202 (2,2 (2) | 2(1) (1) (1)
€is [615 t g ] tegs [915 t e ]

Cp =

) FEER) W FO
From (45), one has
D°(0) = 2Im[e"(g5° — cpgi®)] on L.
Finally, we obtain from (46), by using (41) and (24), that
D?(H) = (Ma; — cpMy;)(0558in 0 + 03 cos ) + (May — cpM 1) (D5 sin 0 4+ DY cos 6).

4. Complex potentials

Inserting (40) and (45) into (27) we have

- - o, =R [ o = = R?
T(1) = H 'K (6) + H 'K (1) + 8% + 87 5 = b (g5 — epg”) + (&5 — eog) 5
which can be further reduced to

H'K()]" + H'K()] =P~ + PTOIE—E,

where

o0

P™ =iy(g3" — cpgy”) — 8™
The general solution of (49) is (Muskhelishvili, 1975)

_ | — 1 - -
H'K(z) =3 {P +P 2—2] +—2X(Z) [P(z)-!—%—i—%],
where
P(z) = Byz" + By 12"+ + By,
X2 = [ - @)~ b)'"
n=1

Below we discuss the related equations to the coefficients B, involved in (52.1). Near z = 0 one has

b _ 1
X(z)  X(0)

1+5i LIV
2;1:1 n b”

3513

(53)
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where

X(0) = (—1)NH Vanb,.

Since H 'K(z) is analytic near z = 0, substituting (53) into (51), and then letting the coefficients of z~!
and z~2 on the right side of (51) to be zero, we have

SR IS ol (L N P (54)

T T LG, T, )T

72 WR%LLB =0 (55)
' X))

One obtains from (54) and (55) that
B—Q = _X(O)RZP_()Ov

1SN /1 1 (56)
Bi=-3 2 (a—n‘Fb—n)ﬁr

On the other hand, when z — oo:

1

X(z)

—N
=z

. (57)

1 & L,
1+2—Z;(an+bn)+0(z )

Substituting (57) into (51), and then noting that the coefficients of z° and z~! on the right side of (51) are
zero when z — oo, we have

2 —P*+B, =0,
1 N
-1 E —
z BNfl + 5 — (an + bn)BN - 07

which results in
BN = Poo’ (58)

NS

By_i=— Z(an + by)By- (59)
n=1

The remainder unknown coefficients can be determined from the single-valued conditions of displace-
ment and electric potentials, such that

/ AU(¢)dt = 0. (60)
Lc
Inserting (33) into (60) leads to

[ K-k @a=o,
namely

/ [H'K' (1) — H 'K (1)]dt = 0. (61)

Le
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Substituting (51) into (61) produces

/LC Xj(t) {P(t)+%+%}dz=0. (62)

After (51) is completely determined, F;o(z) can be found by using (34). With F,(z) all field variables in
the matrix and inhomogeneity can be readily determined.

5. Field intensity factors

For any crack /,, define the field intensity factors at the crack tip z = b, = Rel® as
K(b,) = ks, kp]" = lim V2nplos, D], ke(b,) = lim \/21pE,, (63)
p— p—

where p means the distance from the crack tip along the interface; &,, kp and kg are the intensity factors of
stress, electric displacement and electric field, respectively.
From (13) one has

(63, D,]" = 2Im[¢"BF(z)], E, = —2Im[e"Q,(z)]. (64)
Noting p = Rd6, and
BF'(z) = BF;(z) = H'K(z), (2) = [F(2)] ;) = [B"'H 'K(2)]),

where the superscript s stands for the singular principle parts of functions, and then inserting (64) into (63)
produces

k(b,) = 2\/21r—RIm[ lim (0 — 9b)1/2€i6H1K(2)} ,

0—0y

K (b,) = —2v/27RIm [A@ lim (0 - ()b)l/ze“’HlK(z)] : (65)
T @)

where kg) is the intensity factor of electric field when z approaches into the crack tip from within the in-
homogeneity (j = 1) or the matrix (j = 2), and AY = B;".
Using (38), (65) can be rewritten as

ko(br) = Hy'$(0y), k() = Hyy' $(0s), & (by) = — | A Hy,' + ADH, ' $(0), (66)
where
¢(0y) = 2v27RIm lim (60— 0y) 'K, (2)} : (67)
—Up
From (66) one has
kp = cpky, kY = Wk, (68)
where

o) = —[A3) + cpAY)]. (69)
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It can be shown from (69) that

0@ @1
D= _ O €15Cyy — €15Cy (70)
E E (1) BRE) 2 )]

2(2) (2)r,2(1) (1
Cyq [els toegen] teglers e }

Egs. (68) and (70) show that kp and kg are always dependent on k,, and moreover the electric field is
jumpy ahead of the crack tip.
Furthermore, substituting (51) into (65.1) leads to the general expression of the field factor vector as

0 T 1
_ . a2 & B B, o
k(b,) = vanIm<(}Ln(;t(9 Ob) @ _P(z)—i— . + = >, z=Re". (71)
Similarly, at x = a, one has
0 T 1
— im (0, — 0)"2 -5 By B
k(a,) = 27tRIm< (}151(0(, 0) Y0 _P(z) t— 35 | > (72)
6. Examples

6.1. The solution to a permeable crack

For the case shown in Fig. 2, we have

ay =Re % b =Re, X(z) = \/22 — 2zRcos 0y + R2,

(73)
X(O) = —V Cllbl = —R7 P(Z) = B12+ BO'
From (73), (56), (58), (59) one can obtain
B, =P, B, =—RcosO,P~, (74)

B,=RP , B_,=—RcosOP~.
Substituting (73) with (74) into (71), and then using the following identities:

X(0) = R\/em —2¢eifcosly+1 = em/zR\/ew —2cos 0y + e = e??R\/2+/cos 6 — cos O,

Fig. 2. The case of an interface crack.
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and

cos 0 = cos[fy + (0 — 0y)] = cos by — (0 — ) sinly + - - -,

we obtain

by) = 2+/7R sin 0 Im[e*/>P™].
Similarly one has
= —2/7R sin O, Im[e /2P,
in which P*, defined by (50), can be reduced to
P> = —g{ky,

where

Ko =[l,cp]",  g° =My (635 +10%) + My (D +iDYX).

Substituting (77) into (75) and (76) results in

bi) = —2+/mR sin O Im[e"™ /g7 ko,
1) = +2¢/7R sin 6 Im[e ™" g K.

Inserting (78.1) into (79) and (80) leads to

. 0o 0o
k(b)) = —2+/wRsin b [M” <a32 sin— > + 03] cos— > ) —|—M12(

. .0 0 .0
= +2+/7nRsin 0O, [M“ <a§§ sm?O — 05 cos%) + M (DgC s1n?0 — DY cos

For the case of purely elastic materials,
Bl 204(113’ BZZCE‘?, Mll :F/(1+F), MIZZO,

where I' = cf&) / cﬁ), and (81) and (82) degenerates into

2r 0o 0o
k(b)) = —1—\/nR sin 0y (an sin— > + 03] cos— 5 )

+TI

2r . .0 0
ko(ay) = 14_7F\/71R sin 0y <a§§ s1n§O - 05 cos20>,

which is consistent with that of Gong and Meguid (1994).

oo
Dy sin— + D{” cos —

4

2

0
2

4

3517

For the case of a homogeneous piezoelectric material, M = I/2, and we have from (81) and (82) that

0o 0o
k(b)) = —v/mRsin 0y (032 sin— > + 03] cos— 3 )ko,
. .0 0o
k(a)) = \/M(og’j sin 20 03] COS—= 7 )ko,

(84)

which implies that in this case, the intensity factors are not dependent on the applied electric loadings.
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6.2. The solution to two permeable cracks
For the case shown in Fig. 3, one has

a = Re—i()(), bl — Rei()o, a = —ay, b2 = 7b1, P(Z) = BQZZ + B12+ ﬂOa
X(z) = V2 = 222R>cos 20, + R*,  X(0) = R*

and

BZ = l)007 Bl = 07
B, = _R4Wa p_ =0
Substituting (85) with (86) into (71), and then using:

X(0) = V2R%"\/cos 20, — cos 20,

we obtain

k(b)) = \/271:—R1m< Bj

1 b}
2R%/5in 20, [ﬁ o7 B+ ]>
Eq. (86) shows that

$22i+lsz_%2a

is purely imaginary, and thus (88) becomes

VTR
V/2'sin 20, R?
It can be shown (see Appendix A)

B, = cos20,R’P™ — R*P™.
Substituting (90) into (89) leads to

VR .
k(b)) = —m(coswo — 1)Re[P™].

k(b)) = — Re[p,.

Fig. 3. The case of two interface cracks.
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Using (77) and (78.2), (91) can be further reduced to

. 2
sin” 0y

k(b)) = —V2aR —— (M,,06%5 + M»D*)K,. 92

(b1) V2n \/m( 1105 + MDy )k (92)

6.3. The solution for the case of impermeable cracks

If the cracks are impermeable, one has D? = 0, which is equivalent to letting the coefficient of i, be zero.
Considering this we have from (50) that

P* = g~ (93)

Thus, the corresponding intensity factors, from (75) and (91), are

k(b)) = —/nR sin 0 Im[e'"/*g*], (94)
for the case of an impermeable crack, and
V7R
k(b)) = ——= 20, — 1)Re[g™], 95
( l) m(COS 0 ) e[g ] ( )

for the case of two impermeable cracks.
Substituting (41) with (24) into (94) and (95) we obtain

. O, 0 . 0 0\"
k(b)) = =2+/nRsin 0, lM(ag’gsm?OJra;’jcos?O,D;" s1nEO+Df°cosEO> ],

for the case of a crack, and
sin® 6,
v/sin 20,

for the case of two cracks.

k(b)) = —V27R M(s35, DF),
6.4. The solution for the case of a completely bonded inhomogeneity

In this case, the generalized displacement is continuous on the whole circular rim, and thus one has from
(33) that

K'(t) —=K (t{)=0 on L. (96)
The solution of (96) is
K(z) = K(c0) = 0. (97)

Substituting (97) into (34) leads to

BlFlo(Z) :2Mp:>o7 zE Sy,
__R (98)
B,Fy(z) = H'(B;' - BEI)P“Z—z, zZ€ 5.
Eq. (98) shows that all the field variables are uniform inside the inhomogeneity, and they can be ex-
pressed, from (9), as

09, + i3 .
{ D3§ + 1D3(1)1 = 2B1F10(2), Eg + IE(Z) = —2[F10(Z)]<2) (99)
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Using (98.1) and (99) we obtain the relation between the remotely applied fields and those inside the
inhomogeneity as

0 1 ~0 00 3 =00
03 T103 | _ Hnpl 932 7105 100
{D%JriD?} Dy +iD> [’ (100)
Ey = =2[Wh05; + WD), E) = =2[W03 + WnDY], (101)

where W = (B, + B,) .
For the case of an infinite isotropic matrix containing a piezoelectric fibre, letting B, = cf&) and noting
from (41.2) that
M= (BH) " = (+ciB)7,

Eq. (100) becomes

0 ()} 00 P 00
10 o 10
B +c<2>){“32 ! 31}_—23{ 3t 3;0}. 102
( ! “ DnglD(]) ! D3° 41Dy (102)

7. Conclusions

We study anti-plane strain problems of arc-shaped interfacial cracks between two piezoelectric materials
by using the Muskhelishvili’s theory. The presented solutions are not only valid to permeable and im-
permeable crack models, but also are very concise. This makes it easy to observe the mechanical-electric
coupling effects. It is found that for permeable interfacial cracks, the field singularities are dependent on the
applied mechanical load as well as the applied electric load, which is different from the results in the case of

straight cracks. However, for permeable cracks in a homogeneous material the field intensity factors are still
independent of the applied electric load.
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Appendix A. Derivation of (90)

Using (85) and (86), (62) can be expressed as
bLBt%LB +E dt=0, ¢=Re" (A1)
, X+ (l) 2 0 £2 ) = RC, .

in which X*(¢), i.e., (87), has the form

X* (1) = 2R%"\/sin” 0, — sin® 0 = 2R* sin 04" 4, (A.2)
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where
1
A=V1-7sin’0, I=—>1.
sin 0,
Substituting (A.2) into (A.1) yields
PRI, +1_B, — P*R*[_5 =0, (A.3)
where
+0o ein9
I, = / —do, n==+1,-3. (A4)
—o 4
Eq. (A.4) can be further reduced to
0Oy
I, =2 / cosnd 4 (A.5)
0 A
Noting [, = I_;, one obtains from (A.3) that
B, = ﬁip_wzﬁ — P¥R%. (A.6)
-1

Using the following identities:
L_3 fo()o%wde_f()()owde_4fgucf‘ﬁd0_

ERNAE T ST 7
and integration results (Prudnikov et al., 1990):
% cos 0 1 P
/0 5 do = 7 arcsin(4sin 0y),
% cos? 6 sinf, 2.°—1
d0 = Ag——— + ——— arcsin(4sin 0,),
/0 A 0 212 213 ( 0)
where
Ay =1/1 - 2*sin* 0, =0,
we obtain from (A.7) that
I 1
1?24(1_212) — 3 = cos 20;. (A.8)

Substituting (A.8) into (A.6) finally gives
, = cos 20,R’P™ — R’P™.
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